Hydrological fracturing continues to expand the opportunity for domestic energy production, although both the increasing demand for water to use in the process as well as the increasing amount of produced water resulting from hydrological fracturing both create environmental challenges for this critical energy production process. Due to these concerns, more producers are turning to the reuse of produced water through many hydrological fracturing jobs. Although produced water reuse is effective at mitigating water sourcing and disposal concerns, proper treatment of these waters between jobs is critical.
Microbial control in produced waters slated for reuse applications is among the most important treatment processes. Without adequate disinfection, the growth of excessive microbial populations can negatively impact well drilling and production in several ways, including causing corrosion and the souring of the well. While a number of biocides can be used to disinfect produced waters, a number of operational and economic factors must be considered when choosing the best biocide for a given job. Chemical complexity of produced water is also an often-considered factor, but until now, the impact of the produced water on microbial response to specific biocides has not been considered when choosing the best biocide.
Recently, researchers at the University of Pittsburgh published a report in the journal Environmental Science and Technology which described the results of a study they conducted regarding the impact of produced water on the inherent susceptibility of bacteria to glutaraldehyde and sodium hypochlorite. They found that exposure of bacteria to the highly saline conditions found in produced waters caused the bacteria to respond to stresses caused by that environment on a molecular level. These changes, in turn, caused the bacteria to become more resistant to glutaraldehyde and more susceptible to inactivation with hypochlorite.
MIOX’s Mixed Oxidant Solution (MOS), a hypochlorite-based chemistry, has been deployed to treat produced waters from a variety of shale plays and has consistently been proven to provide exceptional levels of microbial population control. Results from this latest study help explain the high degree of performance seen by MIOX’s customers who use MOS to disinfect produced water. As produced water reuse continues to increase in popularity, MIOX looks forward to working with partners and customers throughout the industry to provide a reliable disinfectant solution for these waters and applications.
Tags: chlorine generator, MIOX, mixed oxidant solution, produced water, produced water treatment